
Collaborative Filtering

Yuqing Huang, Slobodan Jenko, Hei Yi Mak, Joao Mendonca (Group: Computing Intelligently)
Department of Computer Science, ETH Zurich, Switzerland

Abstract—Collaborative filtering is a technique used in
recommendation systems to analyze user-item interaction data
and find similarities between users and items. It does not rely
on item attributes or user characteristics, as content-based
approaches do. Collaborative filtering is widely employed in
various applications, such as suggesting movies, products, or
music to users based on their past preferences and behaviour.

This paper presents a comprehensive review of collabora-
tive filtering methods for building recommendation systems.
Bayesian Factorization Machines (BFM) outperform other
methods significantly. Ensembling predictions of models with
similar performances proves beneficial. Further, modifications
to ALS show promising results. The incorporation of bias pa-
rameters in the ALS factorization model improves performance
directly. Additionally, we show promising results for the use
of deep sigmoid factorization if able to be paired with ALS
optimization. Including the item count of the user in the feature
vector enhances generalization for BFM.

I. INTRODUCTION

A recommender system is a class of machine learning
that provides personalized suggestions for users, based on
their past behaviours. There are two main approaches for
building a recommender system: content-based and col-
laborative filtering. The content-based approach requires
extensive information about items and suffers from a lack
of diversity in predictions, while the latter approach makes
predictions based on the user’s preferences towards other
items as well as other users’ preference data. In real-life
scenarios, users provide preference information only to a
small subset of the available items. Therefore, sparse data
is one of the important challenges faced by collaborative
filtering approaches. In this paper, we study different classes
of collaborative filtering methods, develop a novel solution
that achieves competitive prediction accuracy, and compare
the novel solution against baselines and other state-of-the-art
approaches.

II. MODELS AND METHODS

A. Problem Statement

In this problem setting, we consider a large number of
users and relevant items. They form a matrix where rows
correspond to users, columns correspond to items, and each
entry xu,i is the rating given by user u on item i. Given a set
of sparsely observed entries, the goal is to develop accurate
and efficient for predicting unobserved entries.

B. Singular Value Decomposition

Singular Value Decomposition (SVD) decomposes matrix
A in Rn×m into orthogonal matrices U in Rn×n and V
in Rm×m, along with a diagonal matrix Σ in Rn×m. The
matrix Σ contains the singular values σ1, σ2, . . . , σmin{n,m},
where σi ≥ σi+1 for all i.

The Eckart-Young theorem highlights the importance of
SVD in matrix approximation, showing that for each k
between 1 and min{n,m}, we can use SVD to obtain the
best rank-k approximation of matrix A with respect to both
the Frobenius norm and the spectral norm:

Ak = UkΣkV
⊤
k

• Uk is an orthogonal matrix in Rn×k.
• Σk is a diagonal matrix in Rk×k containing the k

largest singular values of A in decreasing order.
• Vk is an orthogonal matrix in Rm×k.

Retaining only the first k singular values and their corre-
sponding singular vectors provides a compact representation
of the original matrix while preserving its essential features.
By reducing the dimensionality of the data, it uncovers latent
factors that represent user preferences and item characteris-
tics.

The method used here for SVD involves filling in missing
matrix entries with the column average (average movie
rating). However, this approach assumes complete knowl-
edge and can adversely affect the matrix’s singular values,
making it unsuitable for direct computation of low-rank
approximations for incomplete matrix representations.

Nevertheless, SVD remains a fundamental tool underlying
various matrix approximation algorithms, three of which we
have implemented: SVD with implicit feedback (SVD++),
Singular Value Projection (SVP), and Nuclear Norm Relax-
ation (NNR). SVD++ [1] [2] incorporates implicit feedback
based on user-item interactions, leveraging the fact that
any user rating implies a level of interest regardless of
the actual rating value. Additionally, it includes biases for
users and movies, along with regularization. On the other
hand, SVP combines SVD with gradient descent, using non-
convex projection to achieve a k-rank approximation in the
matrix. Finally, NNR applies convex relaxation to matrix
completion, maintaining a sparse iterate sequence instead of
a strictly k-rank matrix.

C. Alternating Least Square

The Alternating Least Squares (ALS) algorithm is an
optimization algorithm relying on the existence of sepa-
rable least squares problems that iteratively monotonically
improves the objective and converges to a fixed point by
fully optimizing half of the parameter space in each itera-
tion, making it a compelling alternative to gradient descent
methods.

Our base implementation of ALS utilizes a factored
parameterization model via U in Rn×k and V in Rk×m

such that A ≈ UV and an approximation error described by
the objective:

l(U, V) =
1

2
∥ΠΩ(A− UV)∥2F + λu∥U∥2F + λv∥V ∥2F ,

where λu, λv > 0, and ΠΩ zeroes out entries not observed
in the original matrix A. If we treat U (V) as a fixed matrix,
we can optimize optimally for each vj (ui) separately, as it
is just a least squares problem:

v∗
j =

(∑
i

ωijuiu
⊤
i + 2λvI)

−1

)(∑
i

ωijaijui

)
where ωij is equal to 1 iff entry (A)ij is observed in the

original matrix, else 0.
1) Sigmoid Factorization: One of the downsides of the

factored parameterization model is the mismatch between
the domain of (A)ij ∈ [1, 5] and the domain of the
predictions (Â)ij ∈ R. In the standard factored model, each
prediction (Â)ij is given by the scalar product of the learned
user and item embedding vectors. Even though we know
user ratings fall in the 1 to 5 range, the prediction given
by

∑
i≤k

uivi are potentially unbounded. This issue can be

alleviated by defining the prediction of an element as

1 + 4 ∗ σ(⟨ui,vj⟩)

, where σ is the standard sigmoid function used in logistic
regression. We dub this method ALSsig.

This model can’t be optimized using the Alternating Least
Squares algorithm because of the non-linearity introduced
by the sigmoid function. We instead use the gradient-based
Adam optimizer to learn U and V . In section III-C2 we
compare this model to the original factored model.

2) Bias Incorporation: The original ALS algorithm fac-
torizes the interaction matrix A ≈ UV , but it lacks the
ability to capture the individual characteristics of users and
items. In our updated model (ALSb), we aim to overcome
this limitation by expressing the rating of user i for movie j
as aij ≈ µ+ bi+ bj + ⟨ui,vj⟩. Here, µ represents the mean
rating of movies in matrix A, bi is a bias parameter specific
to user i, and bj is a bias parameter specific to movie j.
This enhancement enables the model to consider the inherent
differences in how users rate movies and how movies are

rated. For example, a user i known for providing very
negative reviews will have a negative bi value to account
for this behavior. This way, the updated model can better
represent user preferences and item characteristics, leading
to more accurate recommendations.

Our updated model is implemented by introducing reg-
ularization factors for user biases (λbu) and movie biases
(λbv). To accommodate these biases in the main weight
matrices, we extend matrix U by adding 2 columns: one
column to capture the user biases and another column filled
with 1’s. Similarly, we modify matrix V by adding 2 rows:
one row to accommodate the movie biases and another
row filled with 1’s. This allows the biases to be seamlessly
integrated while maintaining the mathematical structure of
the matrix factorization.

3) Deep Sigmoid Factorization: The factored model im-
poses certain constraints on the predictions that might not
accurately reflect reality. For example for n = m = 2, k = 1
we have (Â)11(Â)12 = (Â)21(Â)22. A natural question,
therefore, is whether we can modify the model in a way that
allows it to better reflect the true relationships in the dataset.
We have attempted to do this by applying a parametrized
monotone function to the outputs of the factored model:

(Â)ij = 1 + 4fL ◦ . . . f1(σ(⟨ui,vj⟩))

, where fl(x) = σ(bl + wlx). This is a generic approach,
inspired by the success of deep neural networks.

Our experiments show that the modified model struggles
to achieve better validation results than the ALSsig, even
though it typically reaches lower training loss. We conclude
that other pieces are required to achieve results better than
ALSsig with this method. Because of the negative results,
we don’t include this method in the following sections.

D. Bayesian Factorization Machine

Factorization machines are a generic supervised learning
approach that accounts for feature interactions with factor-
ized parameters. [3] In the matrix completion problem, a
feature vector x = (Iu, Ii) is created for each user-item
pair, where Iu represents an indicator variable for the active
user and Ii is an indicator variable for the active item.

Given a feature vector x ∈ R, the model for a factorization
machine of degree d = 2 is formulated as follows.

ŷ(x) := w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

wijxixj

The model parameters consist of a global bias w0, i-th
variable strength wi, and interaction parameters wij . For
Bayesian Factorization Machines, the Bayesian variable se-
lection (BVS) method was proposed to capture the heredity
between feature interactions. [4] The model is then opti-
mized using alternating gradient descent. [3] [5]

E. Ensemble

To combine the power of the trained models, we use
linear regression to learn a weight vector that aggregates
the predictions of the models. This technique is known as
linear blending [6]. Given a set of M models, training data
D, and the predictions ŷtrain

i ∈ R|D| by each model i,
the ensemble applies linear regression to find the optimal
weights w∗ = (w∗

1 , w
∗
2 , . . . , w

∗
M) ∈ RM and bias b∗ ∈ R

that minimizes the least square loss,

ℓ(w, b) =

∥∥∥∥∥
(

M∑
i=1

wiŷ
train
i + b · 1

)
− y

∥∥∥∥∥
2

2

where y ∈ R|D| are the true ratings and 1 is a vector of ones.
To perform inference on unseen data D′, the ensemble output
ŷ ∈ R|D′| is an affine function of the models’ predictions
yi’s according to w∗ and b∗,

ŷ =

M∑
i=1

w∗
i yi + b∗ · 1.

Since the models’ predictions and the ensemble output
should all be nonnegative, it may be helpful to consider the
nonnegative linear regression problem where wi ≥ 0 for all
i ∈ [M]. We can also disable the bias by setting b = 0.

III. EXPERIMENT RESULTS

Data set: The data set used in the experiments contains
10000 users and 1000 items, with 11.77% of the matrix
entries observed. Each entry is a rating of integer value
between 1 and 5. The test set contains another 11.77% of
the matrix that is unobserved.

Evaluation Metric: The collaborative filtering algorithms
are evaluated on root-mean-squared error (RMSE).

A. Performance of Models

We performed 5-fold cross-validated grid-search to opti-
mize the parameters of the collaborative filtering methods
introduced in section II. We then train a model for each
method with its best parameters using the whole training
dataset. We also implemented the Kaggle baseline as intro-
duced in the project tutorial.

The optimal parameters of the models are reported in
table I. The validation and test RMSEs (public scores) of
the models are summarized in table II. The best validation
RMSE and test RMSE are achieved by BFM which are
below 0.98. Most SVD-based methods have slightly higher
errors than the baseline. ALS methods are able to score
better than the baseline in the validation and test sets.

B. Comparison of Ensemble against Baselines

Our final solution is obtained by combining the predic-
tions of the models in table I (excluding Baseline) using
the ensembling method introduced in section II-E with
nonnegative weights constraint and b = 0. The test RMSE

Model Parameters
SVD k=3, iters=150
SVD++ k=3, iters=100, η = .005, λ = .04
SVP k=3, iters=50, η = 2.0
ALS k=5, iters=60, λu = 13, λv = 17
ALSsig k=5, iters=1000, λu = 0.3, λv = 0.3
ALSb k=5, iters=90, λu = 23, λv = 37, λbu = 1, λbv = 100
BFM k=10, iters=300, sample=280
NNR k=10, iters=120, τ = 600, η = 0.1

Table I
OPTIMAL PARAMETERS OF THE MODELS.

Model Validation RMSE (± std.) Test RMSE
Baseline 0.99239 (±0.00125) 0.98787
SVD 0.99379 (±0.00131) 0.98891
SVD++ 0.99393 (±0.00100) 0.98931
SVP 0.99305 (±0.00145) 0.98830
ALS 0.99111 (±0.00160) 0.98542
ALSsig 0.99091 (±0.00141) 0.98627
ALSb 0.98604 (±0.00144) 0.98143
BFM 0.97898 (±0.00081) 0.97403
NNR 0.99468 (±0.00119) 0.99096

Table II
VALIDATION AND TEST PERFORMANCE OF THE MODELS.

is improved to 0.97375 which is significantly better than the
baseline, SVD methods, and ALS methods, and is slightly
better than BFM alone. We found that enabling bias does
not help and allowing negative weights can severely hinder
performance. It is also worth noting that the ensemble
assigns large weight (≥ 0.95) on BFM and small weights
(≤ 0.05) on other models, meaning that the ensemble’s
predictions are dominated by the predictions from BFM. If
we exclude BFM, the ensemble achieves a test RMSE of
0.97898, which is a more significant improvement over the
second-best model, ALSb. The weights are also distributed
more evenly, allowing models to contribute more to the
ensemble predictions. This suggests that our ensembling
method is more suitable for combining weak models with
similar performances.

C. Ablation Study

1) ALS + Bias (ALSb): In this experiment, we aim to
fairly compare the performance of two matrix reconstruc-
tion methods, ALS and ALSb, by using their respective
optimal parameters as listed in Table I. The comparison
is done across different numbers of iterations to observe
their evolution over time. The results in Table II confirm
our expectations, showing that ALSb outperforms ALS. This
improvement can be attributed to the incorporation of bias
parameters, which enhances the expressiveness of the UV
factorization model, despite its inherent simplicity. Notably,
the introduction of a bias parameter for each movie and user
leads to a significant 0.05 reduction in RMSE, making it our
second most powerful model, following BFM. Furthermore,
Table III demonstrates that ALSb consistently outperforms

the original ALS at all training stages and converges after a
similar number of iterations. This indicates that the compu-
tational complexity of ALSb is not significantly higher, yet
it achieves significantly better performance than the original
ALS method.

Iterations ALS (± std.) ALSb (± std.)
15 0.9872 (± 0.0009) 0.9918 (± 0.0013)
30 0.9864 (± 0.0019) 0.9917 (± 0.0010)
45 0.9861 (± 0.0015) 0.9912 (± 0.0016)
60 0.9860 (± 0.0015) 0.9912 (± 0.0016)
75 0.9860 (± 0.0014) 0.9911 (± 0.0016)
90 0.9860 (± 0.0015) 0.9913 (± 0.0015)

Table III
COMPARISON OF THE ORIGINAL ALS AND ALSB TRAINED ON THEIR
OPTIMAL PARAMETERS FOR A DIFFERENT NUMBER OF ITERATIONS.

RMSE CALCULATED BY CROSS VALIDATION.

2) ALSsig: In this experiment, for a fair comparison, we
use Adam to train both the standard and sigmoid factored
models. We use the same fixed k and the number of
iterations for both models but find separate λu and λv for
each model using grid search. The experiment shows that
the sigmoid model outperforms the standard one by a large
margin when coupled with the Adam optimizer. It is also
interesting to note that ALS finds a much better model than
Adam for the standard model (see Table II), indicating the
effectiveness of ALS compared to the more generic gradient-
descent-based approaches.

k iters original RMSE (± std.) sigmoid RMSE (± std.)
3 700 1.0062± 0.0012 0.994 (±0.0014)
5 1000 1.0046± 0.002 0.991 (±0.0014)
7 700 1.008± 0.0019 0.992 (±0.0013)

Table IV
COMPARISON OF THE ORIGINAL FACTORED MODEL AND SIGMOID
FACTORED MODEL. BOTH MODELS ARE TRAINED BY THE ADAM

OPTIMIZER. RMSE CALCULATED BY CROSS VALIDATION.

3) BFM: For the Bayesian Factorization Machine
method, we perform an ablation study on how different ranks
and feature constructions impact the prediction accuracy.
The RMSE errors are reported on both validation and test
sets in table V. First, we observe that models with a too-
low rank cannot capture well the complex patterns in data
and models with a too-high rank have less generalizability.
Then, we explored different feature creation methods. The
standard feature consists of one-hot encodings of user-ID
and item-ID. An extension is to add the observed item count
per user to the standard feature. The new feature is expressed
as x = (Iu, Ii, cu), where cu is the number of observed
entries for user u. Table V shows that adding the observed
count to the feature vector gives slight improvement to the
prediction accuracy in all experiments.

Rank Feature Validation RMSE (± std.) Test RMSE
k=5 one-hot 0.98236 (±0.00081) 0.97863
k=10 one-hot 0.98024 (±0.00104) 0.97513
k=15 one-hot 0.98149 (±0.00125) 0.97594
k=5 one-hot & count 0.98086 (±0.00089) 0.97752
k=10 one-hot & count 0.97898 (±0.00081) 0.97403
k=15 one-hot & count 0.97958 (±0.00087) 0.97433

Table V
VALIDATION AND TEST PERFORMANCE FOR VARIOUS BFM MODELS

AND FEATURE SELECTIONS.

IV. CONCLUSION

Collaborative filtering methods are used to build recom-
mendation systems by finding similarities between users
and items using user-item interaction data, without relying
on item attributes or user characteristics as content-based
approaches do.

In our report, we conduct a comprehensive review of var-
ious collaborative filtering methods, namely: SVD, SVD++,
SVP, ALS, ALSsig, ALSb, BFM, and NNR. Our find-
ings reveal that Bayesian Factorization Machines (BFM)
outperform the other methods significantly. However, we
also present promising results for simpler methods with
modifications on ALS performed by our group.

Ensembling the predictions of different models proves
to be beneficial, especially when the models have similar
performances. The linear regression ensembling method is
simple to implement, requires only the predictions of the
models (no retraining of individual models), and generates
predictions quickly. However, it may suffer from assigning
too much weight to a single model if it significantly outper-
forms others. Thus, having models with similar performance
is crucial for effective ensembling.

Furthermore, our ablation studies on ALS demonstrate
the potential of enhancing relatively simple methods to
achieve more competitive performances. ALSb increases the
expressiveness of the model via bias incorporation while
attaining a closed-form solution, allowing the use of ALS
optimization and, thus, better results. Encouragingly, our
ALSsig experiments suggest that a closed-form solution for
ALSsig that enables ALS as the optimization algorithm (in-
stead of ADAM) may further boost the model’s performance,
especially when combined with the bias incorporation of
ALSb.

Lastly, our ablation study on BFM indicates that including
the item count of the user in the feature vector improves
generalization to unseen data.

REFERENCES

[1] Y. Koren, “Factorization meets the neighborhood: a mul-
tifaceted collaborative filtering model,” Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2008.

[2] N. Hug, “Matrix factorization-based algorithms.”
[Online]. Available: https://surprise.readthedocs.io/en/stable/
matrix factorization.html

[3] Y. Chen, Y. Wang, P. Ren, M. Wang, and M. de Rijke,
“Bayesian feature interaction selection for factorization ma-
chines,” Artificial Intelligence, vol. 302, p. 103589, 2022.

[4] S. Rendle, “Factorization machines,” 2010 IEEE International
Conference on Data Mining, pp. 995–1000, 2010.

[5] T. Ohtsuki, “myfm - bayesian factorization machines in
python/c++.” [Online]. Available: https://myfm.readthedocs.io/
en/stable/

[6] A. Töscher and M. Jahrer, “The bigchaos solution to the netflix
grand prize,” Netflix prize documentation (2009), pp. 1–52,
2009.

