
Advanced Surgical Planning - Implant Recognition

Sarper Ertekin
ETH Zürich ITET
sertekin@ethz.ch

Orhun Görkem
ETH Zürich CS
ogoerkem@ethz.ch

Yuqing Huang
ETH Zürich CS
yuqhuang@ethz.ch

Laura Roduner
ETH Zürich RSC
rodunerl@ethz.ch

Abstract

This paper originates from a student project in co-
operation with ETH Zurich and CustomSurg and aims
to support surgeons during complex bone fracture surg-
eries using HoloLens to detect, track and label implants.
Modern technology contributes massively to 3D Vision.
Therefore, deploying Microsoft HoloLens in surgeries
is not far-fetched, although relatively novel. There are
many possible applications, while CustomSurg provided
us with the opportunity to detect their custom implants
and set the groundwork for HoloLens application in
surgery, which we approached with off-device computation.
You only look once version 5 (YOLOv5) deployed on
a server communicates bidirectionally with HoloLens
to send a captured image via TCP to the server, which
processes the image and sends back information regarding
the implant’s bounding box and the label. Bounding
boxes were obtained using HoloLens spatial mapping
and several coordinate transformations. Our model is
trained on synthetic data generated in Unity and yields
almost perfect results on synthetic images while slightly
less accurate for real images due to domain gap. This
problem was addressed and tackled by manually adjusting
the training data. Finally, Vuforia is used to compare our
model to market solutions. It is also used to additionally
track handheld implants which is not yet included in our
data set but lacks robustness to sudden movements of
the target object. The code for our work is available at:
https://github.com/sarpermelikertekin/
3dv-project-advanced-surgical-planning-
implant-recognition.

1. Introduction
The ETH Spin-off CustomSurg [6] specializes in com-

plex joint fracture surgery using modern-day technology.
This project results from ETH’s and CustomSurg’s joint
interest and collaboration in terms of 3D Vision with
HoloLens and is realized over a span of 3 months as part of

the lecture 3D Vision. CustomSurg is currently researching
and deploying HoloLenses in complex bone feature surg-
eries in order to support surgeons making difficult decisions
prior, as well as during the surgery. In the framework of this
project we focus on choosing the correct implant, by recog-
nizing it in HoloLens, tracing it, detecting the implant’s type
and rendering said type with the implant’s bounding box in
HoloLens. This way, surgeons can visually confirm that the
present implant is truly the implant chosen for a particu-
lar surgery. The following sections of this report will out-
line the general methodology, technical details on the im-
plementation as well as the results obtained.

For each fracture, there is an implant (see figure 1a) cho-
sen based on its fit. These implants are typically standard
size and shape, while sometimes adjusted by bending to fit
a specific fracture. Each implant comes with an according
guide, which enables the surgeon to pre-drill wholes in the
patient’s bone in order to screw the according implant into
place (see figure 1b).

(a) (b)

Figure 1: (a) Model of Implant. (b) Model of fractured bone
with implant and screws.

3D Vision is a large field and has many possible ap-
plications. CustomSurg is known for using technology
to reduce treatment time and improve surgical outcomes.
We are given the opportunity to develop an application for
HoloLens to assist surgeons before as well as during surgery
and decided to contribute by implementing a general com-
munication pipeline between HoloLens and a server, which
among other things can be used to reliably detect implants.

1

https://github.com/sarpermelikertekin/3dv-project-advanced-surgical-planning-implant-recognition
https://github.com/sarpermelikertekin/3dv-project-advanced-surgical-planning-implant-recognition
https://github.com/sarpermelikertekin/3dv-project-advanced-surgical-planning-implant-recognition


We achieved this by carefully structuring sub-tasks, which
will be elaborated in the following sections including cor-
responding results. For the work distribution, Orhun and
Sarper are responsible for data generation; Orhun for Yolo
training; Sarper for TCP communication; Yuqing for 2D-3D
mapping of bounding box; and Laura for auxiliary research
and report writing.

2. Related Work

In this section, we discuss related works on object detec-
tion in Microsoft HoloLens as well as on HoloLens 2 sensor
data streaming.

2.1. Real-time Object Detection in Mixed Reality

Due to the headset hardware limitations, HoloLens can
only run lightweight algorithms on-device. In order to use
heavy object detection algorithms based on Deep Neural
Networks (DNNs), many existing works chose to perform
part of the overall computation in a cloud environment. Ear-
lier work [4] presented a mixed reality system that can de-
tect and track generic objects in a dynamic environment in
real time. The system combines the HoloLens’ processor
with a cloud system equipped with high computational ca-
pabilities. The Cloud System is in charge to process Region-
based Fully Convolutional Networks (R-FCN) algorithm to
detect objects from a frame with the right compromise be-
tween speed and accuracy. On the other hand, HoloLens
runs the Local System, which performs object tracking, fea-
ture extraction, and spatial mapping tasks.

Vuforia is a market solution that provides an augmented
reality software development kit for creating augmented re-
ality applications. It uses computer vision technology to
recognize and track 3D objects in real time. Although Vu-
foria gives good performance for object recognition tasks,
it is a “black-box” solution. Our work aims to provide
a simpler and open-source pipeline that sends video data
from HoloLens to the server, performs object recognition
via YOLOv5, and sends back predictions to HoloLens for
visualization. Moreover, we implemented object recogni-
tion in Unity using Vuforia Engine API for comparing the
performances of our solution with the market solution.

2.2. HoloLens 2 Sensor Streaming

HoloLens 2 Unity Research Mode Streamer. [5] This
repository offers Unity Plugin for accessing HoloLens 2 Re-
search Mode sensors and video camera, and streaming them
to desktop. We ran a Unity app using this Plugin and visu-
alized the sensor data on desktop. However, we noticed that
there are significant delays in the video camera streaming
with this solution.
hl2ss. [2] This repository provides a HoloLens 2 server
software and Python client library for streaming sensor data

via TCP. The server is offered as a standalone applica-
tion (appxbundle) or Unity plugin (DLL). Since we need
to modify the server application to not only stream video
data but also send prediction data back to the HoloLens, the
server software from this repository cannot be readily used
for our purposes. Therefore, we decided to implement our
own TCP communication pipeline.

3. Method
3.1. Problem Statement

Since many implants look alike and it is not obvious
which guide belongs to which implant, our goal is to make
sure the surgeon uses the correct implant and the corre-
sponding guide. In order to reach that goal we need to 1)
recognize implants in a scene, 2) obtain a 3D bounding box
and render it in HoloLens and 3) classify the implant’s or
guide’s type, while also displaying the type in HoloLens.
This way the surgeon can cross-check, whether the present
implant is the one chosen for this surgery.

3.2. Communication Pipeline

We quickly decided on off-device computing, due to dif-
ficulties of deploying YOLOv5 on HoloLens and eventual
computational overhead leading to time delays when de-
tecting the implants. Therefore we established a commu-
nication pipeline between HoloLens and our server.

On a high level, HoloLens captures a picture from its
camera and sends it over TCP to a server to be processed
and given as input to YOLOv5. When YOLOv5 receives the
image, it sends the class and position information back to
the HoloLens as a string (multiple objects are supported),
where this string will be further processed in order to place
the bounding box and highlight the hologram of the detected
implant.

3.3. Data set Generation

Since custom training is necessary to detect implants and
guides, an according data set is needed. Manual annotation
of real images could be time inefficient, therefore our ap-
proach is to generate a synthetic data set for training. We
used 100 background images and placed the virtual models
of our objects in front of them. The objects are randomly
translated, rotated, scaled and colored (in gray scale). In
total, we generated 3000 synthetic images for our training.

3.4. Training

The generated synthetic images are passed to the
YOLOv5 network. Their label files are prepared by con-
verting Unity coordinates and sizes to YOLO format by nor-
malizing. Training yields almost perfect results on syn-
thetic data, whereas we encountered some domain gap be-
tween synthetic images and real images. Namely, the model



learned to separate synthetic images from real images. Less
training does not present better results. To tackle this issue,
we annotated around 100 real images with physical mod-
els of implants and instruments and fine-tuned our trained
model with them.

3.5. 3D Boxes in HoloLens

As soon as receiving the prediction results from the
server, we perform a 2D-to-3D mapping. HoloLens Cam-
era Stream makes the ProjectionMatrix (P ) and Camera-
ToWorldMatrix (C) available. Since the user’s head is in the
center of the HoloLens world coordinate system, we can
write the projection matrix as:

P =

fx 0 px
0 fy py
0 0 1


Therefore, it is straightforward to extract focal lengths
fx, fy and center offsets px, py from the ProjectionMatrix.
Using the pinhole camera model 2, we need to perform a se-
quence of coordinate transformations from the Image pixel
coordinate system to the camera coordinate system to the
world coordinate system. We compute the coordinate map-
ping as follows.

Given pixel coordinates (x, y) on the image, the ray di-
rection in the camera coordinate system can be calculated
by subtracting the center offset and divided by focal length,
in each dimension.

r⃗c =
[
x−px

fx

y−py

fy
1
]

The ray direction in HoloLens world coordinate system is
calculated as r⃗w = Cr⃗c, using the CameraToWorldMatrix
(C). Finally, we need depth information to localize the exact
position of the pixel in 3D. The method we are using is by
shooting a ray in the direction of the center of the bound-
ing box. The intersection point between the casted ray and
the spatial mapping of HoloLens will determine the depth
information.

Figure 2: Pinhole Camera Illustration [1]

4. Implementation
4.1. Data set Generation

The synthetic data generation is implemented by our-
selves in Unity. We prepared a scene with a platform con-
taining the background image and placed the objects in
front. For each image, we randomly picked active objects
to be shown in the scene. The number of active objects dif-
fers between 0 and 5 in one scene, which was implemented
purposely to improve training. Then, for each active object,
a random color, rotation, lighting, translation, and scaling
are applied. An example of our synthetic images is shown
in figure 3.

4.2. TCP Connection

The communication is established bidirectionally, where
the device containing YOLOv5 acts as the server and
HoloLens acts as the client. This part is entirely imple-
mented by ourselves.

First, a picture is taken from the camera of the HoloLens,
which is converted to a Byte Array to be sent via TCP. Since
the image size is bigger than the chunk size we split the Byte
Array into chunks and send every one of them separately,
to fill the Buffer Array on the server side. As a chunk is
received on the server side, we check if the Buffer Array is
full. If not, a message is sent to the client, so that it keeps
sending chunks of the same picture. As the Buffer is full,
the image is reconstructed and given to the YOLOv5 model
to be processed. As output consists of a CSV file with every
object present in the scene, with their names and positions,
which will be sent to the client again. When this result is
received, another picture will be taken to repeat this process.

4.3. Unity App - Bounding Boxes

Our implementation of visualizing bounding boxes in
HoloLens world coordinate system is built upon the existing
work HoloLensCameraStream for Unity [3]. The original
repository provides a Unity plugin with useful functions to
map image pixel coordinates from the HoloLens video cam-
era to 3D coordinates. In our work, we present a Unity app

Figure 3: An example of generated synthetic image



that can 1) display in real-time what the HoloLens sees, i.e.
HoloLens video stream, 2) convert bounding boxes speci-
fied in the image pixel coordinate system to HoloLens world
coordinate system, 3) display the bounding boxes on top of
the HoloLens video stream.

For our implementation, we first create variables that
contain user-defined image pixel coordinates of a bounding
box. Then these coordinates are converted to a ray direction
in the HoloLens world coordinate system using Camera-
ToWorldMatrix and ProjectionMatrix. Furthermore, a ray
is shot from the HoloLens origin to the center of the bound-
ing box, and we attempt to find where the ray intersects with
the spatial mapping of HoloLens. Finally, we use the dis-
tance of the intersection point as depth to place the bound-
ing box in 3D. Unfortunately, we had some issues with the
spatial mapping of HoloLens, therefore our current appli-
cation shows the bounding box on top of the image plane
without the depth information.

4.4. Unity App - Implant Highlighting

Given as an incentive by the representatives of Custom-
Surg, we decided to also implement the functionality of
highlighting the hologram of the detected implant(s), com-
plementary to the bounding boxes. This will help surgeons
to visualize quickly which type of implant they have picked.

To achieve this, we created another script, which han-
dles the CSV file received from the server and extracts a list
of the names of the implants. We map these names with
the actual Game Objects and change their material to the
highlighted material (see figure 4). This implementation in-
cluding the user interface of the App is done by ourselves.

Figure 4: Highlighted implant on a virtual bone fracture
model

Figure 5: Some examples of detection

Figure 6: Implant shown in the Model Target Generator

Figure 7: Target Model of the implant in Vuforia



Figure 8: Confusion matrix of training

5. Results

Regarding the training data and performance of training,
the YOLO training revealed almost perfect results on syn-
thetic data, whereas real images suffered from domain gap.
Then, we under-fitted the synthetic data and fined tuned the
obtained model with manually annotated real images. We
saw that in our results precision is higher than recall, which
means that when an object is labeled, it is generally cor-
rectly labeled, and a random background is not labeled as
an object. However, the model sometimes misses to label
our objects. Quantitative results as well as some randomly
selected training samples can be seen in figure 5 and 8.

Detection delay is an important factor as the end goal is
to achieve real-time detection on HoloLens. In our solution,
the inference duration is around 0.13s. The performance of
tracking in total including network latency is around 2 FPS.
Note that by tracking we mean the number of detections as
we do not use any other method for tracking.

5.1. Vuforia

Finally, to compare our results, we implemented a Vufo-
ria scene for both handheld devices and for HoloLens. In
this setting, we used Model Target feature from Vuforia,
which enables the user to track 3D models given a CAD
model in their Model Target Generator application.

To use this feature, one must upload the CAD model of
the desired object into the Model Target Generator appli-
cation (see figure 6 and 7). Afterwards, the model can be
configured to be recognized from different angles. After
creating the Guide Views, which enables the model to be
recognized, one can create a data set from different models.
Upon creating a data set, we import it into Unity and the 3D
Models will be recognized by Vuforia.

As it is a professional app, created for business applica-
tion, the tracking and mapping works well, even though the
model is not very robust to the sudden movements of the
tracked target.



6. Discussion and Conclusion
As outlined earlier, we rely on YOLOv5 for training and

Vuforia for comparing our model’s performance. This deci-
sion was based on their suitability for our task. We also con-
sidered two existing repositories to work with HoloLens,
one of which was discarded due to extensive delays in the
video streaming, while the other repository was modified to
our needs.

As aforementioned, synthetic data yields almost perfect
training results in contrary to real data, due to domain gap.
Fine-tuning the model with manually annotated real images
performs well, but is cumbersome and inefficient in imple-
mentation and not generalizable to large data sets and more
complex applications. We also saw that precision is larger
than recall, while both are to our satisfaction. Keeping in
mind, that we support surgeons detecting whether the in-
tended implant is present or not, precision is more impor-
tant for this setting. A mislabeled implant or guide could be
mistaken as intended for the surgery and falsely used on a
patient, with severe consequences. While failing to detect
the implant at all would still be undesirable, but with less
severe consequences, since this error is easily detectable.

Off-device computing proved to be a valid implementa-
tion for this task since it is much faster than Unity deployed
directly on HoloLens, which produces significant delays of
around 20 seconds. Moreover, there is no need for actual
tracing.

Vuforia is a standard and professional application and
therefore performs well. Furthermore, it allows us to detect
handheld devices, which is not implemented in our solution.
In contrast, our model is more robust to sudden movements.

Future work would first of all include displaying proper
3D bounding boxes. We laid the groundwork for that, but
unfortunately could not entirely finish within the framework
of this project. As mentioned before, our model was not
trained to detect partially covered implants, which would be
a simple but effective addition, since in real-life scenarios
implants are often handheld. This can be achieved by gen-
erating a new data set, that includes partial implants. A sim-
ilar practical addition is learning whether dull gray implants
can be detected on metallic gray background since operat-
ing rooms are often equipped with sterile metallic surfaces
or casings. Future work should also include increasing time
efficiency and potentially implementing a separate model
for tracking. Both continuations would be extensive and
simply don’t fit this work’s body.

In conclusion, this work lays the groundwork for Cus-
tomSurg to use HoloLens as support for surgeons in com-
plex bone and joint fracture surgery. It performs well in
detecting, labeling implants and corresponding guides. Our
work also presents a reliable and generalizable framework
for object detection, labeling and displaying in HoloLens
using off-device computing.

References
[1] Y. Deldjoo and R. E. Atani. A low-cost infrared-optical head

tracking solution for virtual 3d audio environment using the
nintendo wii-remote. Entertainment Computing, 12, 2016. 3

[2] J. Dibene and E. Dunn. Hololens 2 sensor streaming. arXiv
preprint arXiv:2211.02648, 2020. 2

[3] EnoxSoftware. HoloLensCameraStream for Unity. 3
[4] A. Farasin, F. eciarolo, M. Grangetto, E. Gianaria, and

P. Garza. Real-time object detection and tracking in mixed re-
ality using microsoft hololens. VISAPP, pages 165–172, 2020.
2

[5] C. Gsaxner. HoloLens2-Unity-ResearchModeStreamer. 2
[6] Wyssraumdesign. CostumSurg Website. 1

https://arxiv.org/abs/2211.02648
https://github.com/EnoxSoftware/HoloLensCameraStream
https://github.com/cgsaxner/HoloLens2-Unity-ResearchModeStreamer
https://www.customsurg.com/

